T₁-weighted DCE Imaging Concepts:
Modelling, Acquisition and Analysis

Paul S. Tofts, PhD
Brighton and Sussex Medical School, Falmer, Sussex, United Kingdom

1. Introduction

There are increasing opportunities to use Dynamic Contrast-Enhanced (DCE) T₁-weighted imaging to characterise tumor biology and treatment response, using the modern fast sequences that can provide good temporal and spatial resolution combined with good organ coverage [1]. Quantification in MRI is recognized as an important approach to characterize tissue biology. This article provides an introduction to the physics concepts of mathematical modelling, image acquisition and image analysis needed to measure aspects of tumor biology using DCE imaging, in a way that should be accessible for a research-minded clinician. Quantification in MRI represents a paradigm shift, a new way of thinking about imaging [2]. In qualitative studies, the scanner is a highly sophisticated camera, collecting images that are viewed by an experienced radiologist. In quantitative studies, the scanner is used as a sophisticated measuring device, a scientific instrument able to measure many properties of each tissue voxel (e.g. T₁, T₂, diffusion tensor, magnetisation transfer, metabolite concentration, Ktrans). An everyday example of quantification would be the bathroom scales, used to measure our weight. We expect that the machine output shown on the dial, in kg, will be accurate (i.e. close to the true value), reproducible (i.e. if we make repeated measurements over a short time they will not vary), reliable (the scales always work) and biologically relevant (the quantity of weight does indeed relate to our health). An example of a clinical measurement would be a blood test; we expect it to work reliably every time. This is the aspiration for quantitative MRI: that it should deliver a high quality measurement that relates only to the patient biology (and not the state of the scanner at the time of measurement).

The transfer constant Ktrans (see below) characterizes the diffusive transport of low-molecular weight Gd chelates across the capillary endothelium [3]. It can be measured using DCE MRI, and has been widely used in imaging studies to characterize tumor biology and treatment response. The fractional volume vₑ of the extravascular extracellular space (EES; i.e. the interstitial space), can also be measured. A consensus recommendation [4] proposed that in assessing anti-angiogenic and anti-vascular therapies, Ktrans should be a primary endpoint. Secondary endpoints should include vₑ, the rate constant kₑp (kₑp=Ktrans/ve) and the plasma volume vₚ (if available). The traditional clinical evaluation of tumor treatment is the REIST criterion, based on tumor diameter; however a tumor could die but not shrink, and Ktrans and vₑ may often be more sensitive markers of tumor metabolism. There are also applications of DCE-MRI in tissues other than tumors, e.g. renal and myocardial function; this article focuses on tumor applications, with one example of renal function.

2. MRI modelling

Before any pharmacokinetic analysis can take place, the Gd contrast agent (CA) concentration has to be found from the MRI signal enhancement. This requires an MRI model, which has two components. First, T₁ is reduced by the presence of CA (eqn. 1 see appendix). The relaxivity r₁, i.e. the constant of proportionality between Gd concentration and increase in relaxation rate R₁=1/T₁, is usually assumed to be equal to the in-vitro value (measured in aqueous phoʊm)nt), although it can alter in-vivo. The native T₁ of the tumor (i.e. the value before injection of CA, T₁ₙ) must also be known. Second, the way in which the T₁ reduction increases the signal is modelled (eqn. 3); this is specific to each sequence type, and also requires accurate knowledge of the flip angle FA. The most common sequence is the simple gradient echo (FLASH), on account of its speed; the sequence must be truly spoilt (i.e. there is no build up of steady state transverse magnetisation). Provided these 3 parameters (r₁, T₁ₙ, FA) are known then there is a clear relationship between signal and Gd concentration.

Some studies attempt to find Gd concentration from signal by using a phantom calibration curve; however these approaches are usually flawed, since the signal is also proportional to proton density (which is greater in an aqueous solution than in tissue), and the FA may be different when imaging the phantom (caused for example by different coil loading or B₁ inhomogeneity). The plasma concentration (required for the pharmacokinetic modelling – see below) may be measured from the blood signal. In this case, blood concentration is first found from the blood signal (using eqn. 3). The plasma concentration is about 70% higher, once haematocrit is taken account of (eqn. 4).

3. Pharmacokinetic modelling

Given the Gd concentration as a function of time, pharmacokinetic analysis can now be undertaken to model how the CA distributes in the body, and how this depends on characteristics of the tumor biology. This is independent of the imaging conditions (MRI field strength etc.), and in principle even independent of imaging modality (CT or MRI). Most modelling uses the concept of a compartment; this is like a bucket: the Gd tracer inside is dissolved in water and at the same concentration everywhere, and the flow in or out of the bucket is small enough to allow the contents to remain well mixed. The simplest compartmental model has one tissue compartment in addition to a vascular compartment, the so called ‘Tofts model’ [5] (mathematically equivalent to that proposed by Kety [6] in a non-MRI context), used to measure Ktrans and vₑ (see fig. 1). The bolus injection of Gd gives a time-varying blood plasma concentration C_p(t), which can be measured in each subject, or else a population average can be used. Since the commonly used contrast agents are small (<= 1000 Daltons) then the leakage from the capillaries into the EES is diffusive and hence reversible; it is therefore proportional to the difference in concentrations, and Ktrans is the constant of proportionality (eqn. 5). The total Gd concentration in a voxel or ROI (eq 6) is the sum of the EES contribution (which usually dominates, since vₑ = 10–60%) and the intravascular contribution (the ‘vp term’) which is often small and ignored (vₑ = 1–10%) [7]. This model was able to explain signal enhancement in multiple sclerosis lesions [5] (fig. 2), and gave values of Ktrans and vₑ consistent with the known biology of acute and chronic lesions.
The differences in enhancement curve shape, and the time of peak enhancement, both apparent in fig. 2, are important. A model simulation [5] using typical K^trans values for tumors shows that the initial slope depends on K^trans (fig. 3A), and is independent of v_e (fig. 3B). The final peak value depends on v_e, and larger v_e tumors take longer to reach their peak (fig. 3B). The shape of the curve is determined by k_p, and if K^trans is increased whilst keeping k_p fixed, the curve increases in amplitude but retains the same shape (fig. 3C) as is expected from equation 6.

In the original formulation of the model (applied to multiple sclerosis), trans-endothelial leakage was low enough that there would not be significant local depletion of Gd concentration in the capillary. Perfusion F was sufficient to maintain the capillary concentration at the arterial value. In this case, K^trans is just the permeability surface area product (PS), and DCE could reasonably be called permeability imaging. This ‘permeability-limited’ case is defined by $F=PS$. In tumors, the endothelium can be much more leaky, there may be local depletion, and K^trans will represent a combination of permeability and perfusion [3]. In the limiting case of very high permeability, then K^trans will equal perfusion, and DCE could reasonably be called ‘perfusion imaging’. This is the ‘flow-limited case’, defined by $F=PS$. The modelling of the capillary vasculature shown in figure 1 is naive, and not surprisingly at high temporal resolution it fails. Modern sequences can sometimes provide a temporal resolution of ~1 s (depending on the organ and the coverage required), and in these cases the initial rise in signal gives information about perfusion, as Gd arrives in the capillary bed over a few seconds. More sophisticated models are then able to extract pure perfusion information [8, 9], and potentially pure permeability information as well. In DCE kidney imaging, the perfusion peak in tissue is clearly delayed (by about 4 s) with respect to the arterial peak (see fig. 5).

4. Image acquisition

In DCE imaging, repeated T₁-weighted images are collected for several frames before Gd is injected, and then for several minutes afterwards. This is often preceded by a T₁ measurement. A good bolus injection can be achieved by using a power injector, with a saline flush after the Gd. The receiver gain must be controlled for the whole series of DCE images.

Quality assurance [2] can be used to ensure the scanner is stable for the DCE acquisition period. Either a phantom can be repeatedly imaged (this can also be used to check T₁ accuracy), or a volunteer can be repeatedly scanned (without Gd).

The sequence parameters will involve compromise between coverage, temporal resolution and spatial resolution. Newer scanners have faster gradients (allowing shorter TR’s), and multi-array receive coils give higher SNR at short TR’s. The optimal sequence will depend on the organ being measured; often frame times of 2–20 s can be achieved. 3D (volume) sequences are preferred, since they have better FA accuracy than 2D (slice selective) sequences. Body coil transmission gives better FA accuracy than combined transmit/receive coils. In the abdomen, a coronal-sagittal oblique slice orientation (instead of transverse) has two advantages: the aorta can be sampled along its length, removing wash-in effects, and breathing movement is mostly in-plane and therefore more easily corrected.

The blood curve may be measured, in order to provide an AIF for the modelling. In this case a temporal resolution of ~3 s or less is desirable, and it is usually the aorta that is imaged. Wash-in effects are reduced by ensuring that the blood is fully saturated (i.e. has experienced several RF pulses) by the time it reaches the location of the region of interest (ROI).

The DCE sequence should ideally be run long enough to sample the enhancement plateau. If not, then v_e cannot be reliably measured, since it does not affect the rising part of the curve, only the plateau value (see fig. 3B).

An example of rapid DCE is shown in figure 4. Imaging of the kidney and aorta at a temporal resolution of 2.5 s, using half standard dose of Gd, allows the perfusion phase of the tissue signal to be seen, and it has a clear delay with respect to the aortic peak. In this organ the blood volume is large (about 30%), and can be estimated because the perfusion peak is so distinct. A modified model fits the data well (fig. 5); in this model of the uptake phase (up to 90 s), the vascular delay and dispersion are accounted for, and there is no efflux from the parenchymal ROI. Renal filtration occurs mostly after bolus passage, and can be well estimated. GFR estimates in controls are in good agreement with normal values (reference 10 and manuscript in preparation).

There is scope to optimise the FA. A small FA gives more signal at low concentration, but has limited dynamic range (see fig. 6 FA = 5º); increasing the FA gives increased sensitivity to Gd (fig. 6 FA = 10º); further increases (fig. 6 FA = 20º or 30º) give a wider dynamic range (at the expense of reduced sensitivity) and are needed if measuring the AIF (peak blood concentration and K^trans) [11] and see fig. 7 below) as well as the enhancement. Nonlinearity is not a concern as it is properly dealt with in the MRI model. Breathing causes serious artifacts in body imaging. There are several approaches to minimising its effect.
Allow free breathing and minimise diaphragm movement by having hands above the head. This can be uncomfortable; having a single hand above the head is easier and nearly as effective.

ii) Breath-hold for first pass (~20 s) then allow breathing (although this can result in a large movement as breathing resumes).

iii) Free breathe and discard data at the extremes of position (using the images or respiratory monitoring to detect the extrema).

iii) Guided free breathing (instructions from the imaging radiographer).

Whether breathing should be controlled or not is currently unclear (this may depend on the kind of patient, and the availability of registration — see below), and is the subject of ongoing research. Flip angle accuracy is often poor yet crucial in determining the accuracy of the K^{in} value. It affects the calculation of concentration from enhancement (eq. 3), the estimation of the AIF, and the measurement of T_{10}.

The tissue T_{1} value (T_{10}) can be measured, or else a K^{in} value is expected to give uniform and accurate K^{in} values. The tissue T_{1} value (T_{10}) can be measured, or else a standard value from the literature used. An accurate measurement is preferred for each individual subject, since in disease this can alter; this can often be carried out in <5 minutes. The most common method is the variable flip angle method, where gradient echo sequences with several K^{in} values are used. These include a mostly PD-weighted sequence (low FA) and one or more T_{1}-weighted sequence (higher FA). Clearly T_{10} accuracy is crucially dependent on the FA accuracy. Inversion recovery methods (with variable TI, fixed FA) are more robust, but usually slower.

The measured K^{in} value is very sensitive to the accuracy of the T_{10} value. An example from breast cancer shows that T_{10} for a range of feasible T_{10} values, the fits are equally good, K^{in} can vary by at least a factor of 2, and v_e can reach impossible values (v_e > 100%); see table 1. k_0 is relatively robust. An increase of 1% in T_{10} gives a decreasing result of 1% in K^{in}, such that the product remains approximately constant. Any low molecular weight contrast agent can in principle be used for DCE methodology. The initial work [5] was carried out with Gd-DTPA, size 570D, and then with Magnevist (938D). Clearly larger molecules will have lower permeability and hence K^{in} values, and the AIF may alter a little with viscosity. In view of the concern about NSF, there will be value in gaining experience using the newer cyclic compounds. Potentially suitable candidate compounds are as follows. Dotarem (754D), Eovist (725D), Gadovist (605D), Magneti (938D), Multihance (1058D), Omniscan (574D), Opti-mark (662D), Primovist (685D), Prohance (559D) and Teslascan (757D) (see http://www.rxlist.com).

5. Image analysis

Analysis can be carried out on individual ROIs, or on a pixel-by-pixel basis to produce a map for the whole organ. The reduction of motion artefact using spatial registration, if available, is likely to improve the quality of the fit (depending on the tissue location). Because the motion is non-rigid, effective removal is much harder than in the brain, and a topic of ongoing research. In-plane movement is relatively easy to reduce. The pharmacokinetic model requires knowledge of the arterial plasma concentration $C_0(t)$; this arterial input function (AIF) can be calculated from the blood signal (which confusingly can also be called the AIF!). It can be measured for each subject, and thus within- and between-subject variation can be taken into account, although if the technique is not implemented well it can introduce extra variation which contaminates the final measured K^{in} values of tissue physiology. Alternately a population average AIF can be used. Some of these are described analytically (i.e. using mathematical equations, rather than just a list of numbers), which makes them more convenient to use. In particular they are available at any temporal resolution. The most popular are the original biexponential Weinnmann plasma curve [5], derived from low temporal resolution arterial blood samples, and the more complex Parker function [11], derived from high temporal resolution MRI data. In the Parker function, bolus first pass and recirculation are represented. After bolus passage and recirculation, the MRI measurement (Parker $C_0(1 \text{ min})$ = 1.53 mM assuming Hct = 42%) is 86% higher than the direct measurement (Weinnmann $C_0(1 \text{ min})$ = 0.82 mM). The possible reasons for this discrepancy include a population difference and wash-in effects in the MRI method. The numerical AIFs of Fritz-Hansen [14] showed excellent agreement between an inversion recovery MRI method and direct blood measurements; their values (average over 6 subjects) $C_0(1 \text{ min})$ = 1.09 mM are closer to the Weinnmann value. The choice of AIF will depend on the tissue being studied and the sequences available. When it comes to the modelling, several versions can be considered. The primary free parameters are K^{in} and either k_0 or v_e (since k_0 and v_e are related). It is worth including v_e to see if the fit improves. The onset time of the bolus T_1 onset will be needed if a population average AIF is used (since the timing of bolus arrival with respect to the start of tissue enhancement is unknown). The appropriate approach will again depend on the organ and the temporal resolution. The mathematical process of fitting the model to the data works as follows. The model signal can be calculated for many combinations of the free parameters (K^{in} etc. see table 2 below). For each of these combinations, the differences between the model signal value (at each time point) and the measured data are found. These differences are squared and summed across each time point to provide a ‘total difference’. The free parameters are adjusted until this total difference is minimised. The model has then been ‘fitted’ to the data. This is called the ‘least squares solution’. The differences between the data and the fitted model are called ‘residuals’ (see e.g. fig. 5). From these can be found the ‘root-mean-square residual’, which is a kind of average difference between the model and the data, and which gives an indication of the quality of the model and of the fit. If the residuals appear random in character then these probably derive from a random effect such as image noise or movement; if there seems to be a systematic pattern to the residuals then the model can often be improved. ‘Fit failures’ can occur, particularly if the data are noisy (e.g. deriving from single pixels instead of a ROI); no

<table>
<thead>
<tr>
<th>Tissue</th>
<th>T_{10} (s)</th>
<th>K^{in} (min^{-1})</th>
<th>v_e (%)</th>
<th>residual in fit</th>
<th>k_0 (min^{-1})</th>
<th>$K^{\text{in}} T_{10}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal low risk fatty portion</td>
<td>0.46</td>
<td>0.88</td>
<td>143</td>
<td>0.091</td>
<td>0.62</td>
<td>0.41</td>
</tr>
<tr>
<td>Tumor — low T_1</td>
<td>0.60</td>
<td>0.63</td>
<td>96</td>
<td>0.092</td>
<td>0.65</td>
<td>0.38</td>
</tr>
<tr>
<td>Normal high risk diffuse density portion</td>
<td>0.71</td>
<td>0.51</td>
<td>76</td>
<td>0.093</td>
<td>0.67</td>
<td>0.36</td>
</tr>
<tr>
<td>Tumor — high T_1</td>
<td>1.3</td>
<td>0.26</td>
<td>36</td>
<td>0.095</td>
<td>0.72</td>
<td>0.34</td>
</tr>
</tbody>
</table>
valid parameter values are produced for that dataset. In the fitting process it is important to identify and flag these failures, so that the output (i.e. invalid parameter values) does not contaminate any subsequent analysis. Values of ve>100% may occur if an incorrect value of T1 has been used (see table 1), or if the enhancement peak has not been reached (see fig. 3B).

Fitting can be implemented in two ways. The simplest way is to use ROI data (which are inherently low noise) and put these into a spreadsheet (e.g. Microsoft Excel running on a PC). The mathematics can be set up using inbuilt formula functions, and the ‘solver’ function can carry out the minimisation process. This does of course require some mathematical and computer ability. The more complex way is to set up pixel-by-pixel mapping, either using a standard environment (e.g. matlab) or by obtaining this from a supplier. Pixel mapping almost certainly needs spatial registration of the images to reduce the effect of motion; the operation is much more computer-intensive, and the single-pixel data are inherently noisy, so care must be taken to identify fit failures. The benefits of pixel mapping include the abilities to interrogate all the tissue without bias, and to generate histograms.

Histograms can show the distribution of parameter values, in a Region- or Volume-of-Interest. By taking care of histogram generation and architecture, histograms become more useful and comparisons are more easily made [15]. The y-values can be calculated such that the area under the histogram curve is either the total volume under interrogation (in mL), or 100%. By taking account of bin width, the histogram amplitude becomes virtually independent of bin width, and in a multicenter brain MTR study the intercenter difference was completely eliminated [16]. Features such as peak location and height can be extracted from histograms. Characterising the distribution tails can have predictive value [17, 18], and principle component analysis of the histogram shape can be powerful [19].

An example of a quite comprehensive software package to carry out pixel-by-pixel analysis is Tissue4D (fig. 8). The various functions needed are provided in a single workflow scheme, and ROI analysis is also available (this is useful to evaluate the quality of the modelling). An example of using a spreadsheet to implement modelling of ROI data is shown in figure 9. The prostate data have quite low temporal resolution (34 s), T1 had to be assumed (1.5 s), and a Parker AIF was used. Including the vp term did not improve the fitting (and in fact it became rather unstable). In several ROI’s from the same subject, fitted onset time agreed within 2 s, suggesting that it can be found quite reliably.

6. Conclusions

The principle physiological parameters that can be measured with DCE-MRI are the transfer coefficient Ktrans (related to capillary permeability, surface area and perfusion) and ve, the size extravascular extracellular space. To do this needs good control of flip angle and an accurate measurement of tissue T1 before injection of Gd. If T1 is not available, then it may be possible to use a standard value; in any case the rate constant kep can still be measured, which is probably useful. The possible and optimum acquisition protocols and models will depend on which tissue is being imaged. Spread sheet analysis can provide quick access to modelling.
To find the plasma concentration \(C_p(t) \), if required, firstly the blood concentration \(C_b(t) \) is found from the blood signal, using eqns 1 and 3. Blood \(T_1^* \) is about 1.4 s [20]. The plasma concentration \(C_p(t) \) is higher, by a factor related to the haematocrit \(Hct \) (typically 42%):

\[
C_p(t) = \frac{C_b(t)}{Hct} \quad \text{Equation 4}
\]

Pharmacokinetic model

The flow of Gd across the endothelium into the EES is

\[
v_p \frac{dC_p(t)}{dt} = K_{trans} (C_p(t) - C_i(t)) \quad \text{Equation 5}
\]

The solution to this is [7] a convolution of \(C_p \) with the impulse response function \(K_{trans} e^{-kep} \); when the IV Gd is taken into account, the total tissue concentration is:

\[
C_i(t) = v_p C_p(t) + K_{trans} \int_0^t C_i(\tau) e^{-kep} d\tau \quad \text{Equation 6}
\]

Model parameters

There are several kinds of parameters used in the model. Fixed parameters (FA TR Hct \(T_{10} \), \(T_{10}^{blood} \)) have preset values which are required before fitting can start. Free parameters \(K_{trans}, v_p, k_{on} \), and maybe \(v_p \) and \(t_{onset} \) are varied and then estimated as part of the fitting process. Other parameters \((C_p, etc) \) are used temporarily as part of the process of modelling the signal. The fixed and free parameters are summarised in table 2.